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LEITER TO THE EDITOR 

Brownian motion constrained to enclose a given area 
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Cedex 13. France 

Received 14 January I991 

Abssad. The probability oi  a planar Brownian closed curve enclosing a fired area i s  
rederived using a simple melhod of functional integration. 'Che mean square distance 
be twen [WO points of the ring is calculated. when the constraint on the enclosed area 
increases, one passes from a diffusion regime of the Brownian ring to a normal resinxime, 
where the curve approaches a circle. 

Random walks under global constraints are an active field of research which embodies 
a variety of physical problems. Recently there was a renewal of interest in the so-called 
stochastic area LCvy problem [l]. A particle performs a random ring in the plane 
constrained to enclose an area A. This stochastic process was introduced by Brereton 
and Butler [23 in polymer physics as a simplified model of polymer entanglements. 
The computation ofthe probability P(A) to enclose an area and other related quantities, 
was reconsidered by Khandekar and Wiegel[3], and more recently by Duplantier 141. 
The problem is reduced to a Gaussian functional'integral which can be computed 
exactly. In this letter I calculate by a simple method the probability P(A)  and I give 
an exact formula for the mean square distance between two points of the ring. I 
demonstrate that when the imposed area increases, the ring tends to a circle. 

Let I E 10, T] be a real parameter and r = r( 1 )  the parametric equation of a closed 
cuwe in the plane B2. The algebraic area enclosed by the curve is 

d[r]=-  d l r c i  : 16 
where the overdot means derivation with respect to the parameter I and E is the unit 
antisymmetric matrix. Assume that r(f) is actually a two-dimensional periodic Brownian 
motion with period T, then r( T )  = r(0) is imposed. The statistical properties of the 
stochastic area process can be deduced from the characteristic function 

x exp( -:JOT dr i2)6(r(T) - 40))  

where t ,  and tz are two intermediate values of the curve parameter designating two 
arbitrary positions on the curve (for simplicity in the notation, the explicit dependence 

t Laboratoire des Interactions loniquer el MolCmlaires, Univetsile de Provence, URA 113, Centre National 
de la Recherche SoientiBque. 

0305-4470/91/100561+04S03.50 0 1991 1OP Publishing Lcd L561 



L562 Letter to the Editor 

of Z on these parameters is omitted), Z, obeys the normalization Z(0,O) = 1. In formula 
(2) the &function takes into account the constraint of a closed Brownian curve. The 
probability to enclose an area A is given by 

Some information about the form of the Brownian ring can be deduced from the mean 
square distance between points ri t , j  and r(t,j 

J2 

J4 
R2=(1r ( f2 ) - r ( t , )12 )=  -?In Z(A,q) (4) 

where Z(A, q )  is the Fourier transform with respect to g of Z(g, 4). 
It is worth noting that the function Z(g, q )  is a Gaussian functional integral, and 

hence can be calculated exactly. The simplest way to compute this functional integral 
is to represent the Brownian path r ( f )  by a Fourier sum 

which automatically satisfies the boundary conditions of a closed curve. Given that 
( 5 )  is a linear transformation of the path, the integral measure becomes a product 
measure on the complex vectors r.: %+IT:=, d'r,,, where the constants are absorbed 
in the normalization factor. This transformation follows from the fact that a Wiener 
process can be expanded in a countable coordinate system [ 5 ] .  Using this transformation 
and standard Gaussian functional integration one obtains, for the generating function 
Z(g, q) ,  the following expression, 

[ sinh x 2x sinh x 
Tq2 sinh TX sinh[( 1 - T)x]] 

X 
Z(g, 4) = 7 exp - 

where x = gT/2 and T = (1,- I,)/ T. The fact that Z(g, q )  only depends on the time 
difference T reflects the translational invariance of the stochastic area process. 
Moreover, Z(g, q )  only depends on the modulus of the vector q expressing the isotropy 
of the Brownian ring. The Fourier transform with respect to q, Z(g, rj ,  of the generating 
function (6) is related to the characteristic function calculated by Duplantier [4]. 

The probability to enclose an area A is obtained introducing (6) into (3) 

dg . a 
P(A)= -e'=" gT = - sech2( TA/ T) 

2rr 2 sinh(gT/2) 2T (7) 

which is Ltvy's result. From formula (4), using (6) and P(A)  = Z(A, O), the mean 
square distance is expressed as an integral which is easily calculated using the residue 
theorem. One finally obtains the exact formula for the mean square distance between 
two arbitrary points of the Brownian ring 

sin TT 
[:sinh rra sin a ~ + ( 1 - 2 ~ )  cosh2(lra/2) cos m1. (8) 

ZT R'=- 
rr cosh rra +cos 2117 LL J 

Figures 1 and 2 show the behaviour of R A . d 7 )  as a function of the parameters T and 
A. Two regimes of the stochastic area process can be distinguished, depending on the 
value of the parameter A/ T. When A/ T is small, the area constraint becomes negligible, 
and the size of the Brownian ring grows as in a normal diffusion process, that is R 2 -  T. 
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Figure 1. Mean square distance R1 at T=+, as a function of T, for A=0.1 (botlom), 1 
(middle) and 10 (top). 

1 

Figure 2. Mean square distance R' with J =  I ,  normalized at its ~ = f  value, as a function 
of T, for A= 0 (top solid), 10 (bottom solid). For comparison the free Brownian ring (top 
dashed) and the circle (bottom dashed) are included. 

However, the diffusion coefficient D differs from the pure (unconstrained) Brownian 
ring value: 
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For a pure Brownian ring the diffusion coefficient is D = ~ ( 1 -  7) .  In fact, this limit 
corresponds to the value of R 2  at A =0, the most probable enclosed area. 

On the other hand, when the ratio A / T  is large, R 2  becomes independent of 'I 
Therefore, a Brownian ring enclosing a given area A, considered as a function of T, 
conserves its size until a time of order A, and then starts to diffuse. 

Figure 2 represents the mean square distance R 2  as a function of T, for different 
values of the enclosed area. In this figure, which intends to show the shape of the 
Brownian ring, R2 is normalized by its value at T = $ ,  and T =  1. For reference the 
graph of R 2  for a free Brownian ring (without the.area constraint) and the one for a 
circle, are also shown. It is remarkable that when the area constraint becomes dominant 
(with respect to the diffusion behaviour) the mean square distance between two points 
of the Brownian ring approaches the radius of a circle; for a circle (the origin of 
coordinates is on the circumference), the radius is given by r2( t) - 1 -cos 2 ~ f  ( f  E [0, 11). 

To resume the above discussion, let us consider the area as a function of the 
parameter T, take A( 7') = T". One may distinguish two cases. First, for a < 1 the mean 
square distance behaves as 

with D given by (9). Note that the Brownian ring grows diffusively irrespective of the 
value of a, smaller than one. For LY = 1, the Brownian ring also expand diffusively but 
with a different diffusion coefficient. Second, for a > 1 one finds the normal scaling 
R ' - A  

and the shape of the ring tends to  that of a circle; when the area constraint dominates, 
the random motion approaches a deterministic one. 

In conclusion, I have demonstrated that a Brownian ring, constrained to enclose 
a given area, presents two regimes depending on the relative importance of the global 
constraint. In the first regime the stochastic area process behaves as a diffusion, when 
the ratio A/ T vanishes for large T. In the second regime, in the opposite case, the 
ratio A/ T increases with T, where the stochastic area process scales normally ( R 2 -  A) 
and the averaged shape of the ring becomes a circle. 

I thank F Dunlop for useful discussions 
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